Do you need or like to work with:

- complex geology?
- conceptual modeling?
- statistical analysis?
- original TOUGH2 files format?

GMS → TOUGH2 → GMS

Andrea Borgia

Scope

- In some instances there is the need to:
 - use TOUGH2 in complex geological systems, with both surface and underground geological data from geophysical techniques and boreholes; amount of data may increase in time and the geological model have to be updated;
 - test different conceptual models or elaborate on specific ones;
 - change grid sizes or orientations, cell spacing and distribution;
 - visualize input and output data in 3D;
 - use standard statistical analysis on output data.
- IN THESE CASES **TOUGH2** MAY BE FOUND TO BE A NIGHTMARE!

 PARTICULARLY FOR BEGINNERS!

One possible solution

 Use Groundwater Modeling System (GMS™) as a TOUGH2 pre- and post-processor < http://www.aquaveo.com>

Preprocessing:

- Build a:
 - 3D Geologic Model;
 - Conceptual Model;
 - 2D and 3D scatter-point sets (observations);
 - grid.
- Exchange data between these four categories.

Postprocessing:

- Visualize model output variables with geology, in space (3D) and time (movies).
- Analyze output variables with statistical package.

GMS - TOUGH2 simulations workflow

- Create a model;
- Interpolate the model to a MODFLOW grid and run it in "steady state";
- Save the GMS-MODFLOW model as original modflow file format;
- Use the Fortran code TMT2 (Translating MODFLOW to TOUGH2 downloadable for free from the TOUGH2 webpage) to generate MESH (with ELEME and CONNE blocks) and INCON files;
- Use the MESH and INCON files to solve your TOUGH2 problem;
- Use the Fortran code TT2M (Translating TOUGH2 to MODFLOW only a preliminary version available ask me), or any other self-made code, to generate 3D scatter point data sets of the values of TOUGH2 output variables at each grid-block center);
- Read the 3D scatter point data set into GMS;
- Interpolate the 3D scatter point data set to the grid;
- Analyze results with visualization and statistical analysis tools.

3D Geologic model

http://www.xmswiki.com/xms/GMS:GMS

- Build your 3D geologic model through:
 - materials (lithological units);
 - tins (2D geologic surfaces);
 - boreholes (used to make stratigraphic horizons);
 - cross sections this is the way you may implement faults;
 - solids (rock "bodies" of specific lithologies).
- Save the geologic model and change it whenever you need without interfering with the rest of the model.

Conceptual model

http://www.xmswiki.com/xms/GMS:Map_Module

- Build your conceptual model through:
 - map module, with tools that are a GIS-based, abstract, simplified description of natural systems;
 - coverages, that contain all information needed to be transferred to specific grid volumes;
 - frame of model grid.

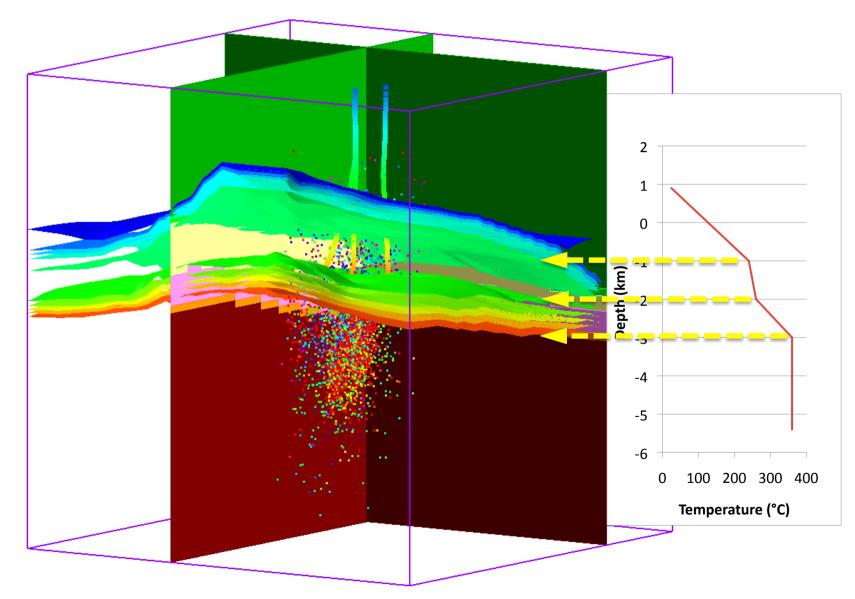
• Build many different conceptual models to test different thesis.

2D and 3D scatter-point sets

http://www.xmswiki.com/xms/GMS:2D Scatter Point Module http://www.xmswiki.com/xms/GMS:3D Scatter Point Module

- Observational point data are represented by
 - 2D scatter point data sets, i.e., values of a variable with (x, y) coordinates;
 - 3D scatter point data sets, i.e., values of a variable with (x, y, z) coordinates.
- 3D scatter point data sets are the format to import the TOUGH2 output data.

Grid


http://www.xmswiki.com/xms/GMS:3D Grid Module

- •Build your model grid by making a MODFLOW-like grid (a rectangular structured grid)
- This is perhaps the weak part of the process:
 - only this type of grid is allowed;
 - only one grid per model is allowed.

Example of 3D visualization of results for a TOUGH2 injection model

Temperature distribution in model before injection Distribution of induced earthquakes during injection

1.0EarthquakeMagnitude0.5

